
AI FOR HACKER
Automatic Exploit

Generation for

Application Source

Code Analysis

THE TEAM
 Alexey Moskvin, Head of Research

 Sergey Plekhov, Head of Development

 Vladimir Kochetkov, Hacking, PoC

 Denis Baranov, Project Manager

 Sergey Gordeychik, Business Development, Marketing

TO ANALYZE ~ 400
APPLICATIONS…

WE NEED THE AI

THERE ARE DIFFERENT
KINDS OF ROBOTS

 Marketing approach
 Interactive Application Security Testing (IAST)

Dynamic Application Security Testing (DAST)

Static Application Security Testing (SAST)

 Technical approach
Black Box/White Box

Static/Dynamic

 Scientific approach
 It's all relative

DAST

 We don’t have access to [server] application

 Fuzzing/Fault injection

 Pro
 Easy to implement/Easy to verify results/Low level of false positives

 Language/Framework/Backend independent

 Cons
 Weak API coverage/Auth/Web 2.0

 Application should be deployed/Can terminate app*

 **

*And admins will terminate you

**Never stops

SAST

 We have access full access to application [source code]

 Model checking/correctness properties of finite-state systems

 Pro
 [possible] Good coverage/Don’t need to deploy app

 [possible] Good performance*

 Cons
 Hard to implement/Hard to verify results

 [can generate]a lot of of false positives/Language dependent

 K := { (i, x) | program i will eventually halt if run with input x} **

*Because of computation timeouts

**The halting problem

SAST

SAST

IAST

 Have full access to application [source code]/system and can
patch it

 Fuzzing/Instrumentation/Data [control] flow tracing

 Pro
 Can combine strengths of SAST and DAST

 Control of dataflow/Second chance vulns/binary analysis

 Cons
 Can combine weaknesses of SAST and DAST

 Need fuzzer/Need to patch server

 Generates tons of results (execution trace)

 Need to have/patch “live” system

CAN WE USE (.AST)?

http://ibm.co/HeDsGw

http://ibm.co/HeDsGw

URL-TO-SOURCE
MAPPINGS

 SAST and DAST have produces incompatible output

 SAST: line of code, CFG

 DAST: Input data (HTTP Request)

?

HYBRID ANALYSIS!

http://bit.ly/17wbvnL

http://bit.ly/17wbvnL
http://bit.ly/17wbvnL

REALITY

 Need to have and to patch “live” system/source code

 Need to analyze application several times

 Magic to correlate “line number” (SAST) and “input data”
(DAST)

 *

*Never stops

PERFECTION?

 No live system

 Low level of false positives

 Automatic exploits generation!

PERFECTION: NO LIVE
SYSTEM

 Need to use static analysis

 Proper model representation is half the battle

ABSTRACT SYNTAX
TREE

CONTROL FLOW GRAPH

PROGRAM
DEPENDENCE GRAPH

SYMBOLIC EXECUTION

SYMBOLIC EXECUTION!

Microsoft Automata

KLEE/Kleaver

SYMBOLIC EXECUTION
:(

 Path Explosion *

 Full support of language (functions/frameworks/environment)**

 [sometimes] too far from real code [execution flow]***

 *Number of paths grows exponentially with program size and can be infinite ****

 Zillions man-hours with endless updates**

 ***SAT was the first known NP-complete problem, as proved by Stephen Cook in 1971

 **** Never stops

!FALSE POSITIVES ==
EXPLOITS

Application Input

Space Preconditions (Bad

Input)

Unsafe (Bad Input)

Exploits

EXPLOIT IS USEFUL TO

 prove that vulnerability exists*

 make additional [dynamic | automatic] checks**

 create test cases for QA

 generate signatures/virtual patches for AF/IDS***

 * get devs to shut up and fix the bug

 **automatic verification via fuzzing

 ***self-defending application

KNOWLEDGE BASE

 Languages grammar
 Input functions

 Filtering functions

 Potentially Vulnerable Functions (PVF)
 Related Vulnerabilities

 Related Preconditions (Bad Inputs)

 Related Exploit Creation Rules

 Safe functions
 Can be called without any risk

WHY SLICING?

DYNAMIC SLICING

SOLVER

 <?php // /test.php

 print base64_decode ($_GET['x']) ;

 ?>

 exploit:

 GET

 /test.php?x=PHNjcmlwdD5hbGVydCgxKTwvc2NyaXB0Pg%3D
%3D

SOLVER

DEMO

INSIDE IN [ISLAND]
GRAMMAR

 Change MySQL Grammar

CONDITIONS

 We can’t [symbolically | interactive] resolve all part of equation

 Session id’s in files:
 (file('../admin/conf/config.inc')[2] == session_id())

 Session values are set:
 $_SESSION["admin_login"]==true

 External connections:
 ftp_connect(str_replace('ftp://', '', $_POST['ftpsite']))

 Configuration:
 !((strpos(php_sapi_name(), 'apache') !== False))

 sqlsrv_connect('***', array('Database' => '', 'UID' => '***', 'PWD' =>
'***'))==True

BACKDOORS?

Exploit:

GET/core/jscss.php?files=%2F..%2F..%2Fetc%2Fpasswd

Conditions:

(md5($_GET['PA']) ===
'bb2a4974d7aca7da8735c70371361c0f')

BACKDOORS!

 …we use it

 for emergency

 support cases

 when we need

 to access files

 but we don’t

 have a password…

DEMO

PRACTICAL TESTS

SECOND CHANCE?

 Cross Site Scripting Vulnerability

 Exploit: GET /viewResults.php HTTP/1.1

 Code: print $question . "
";

 Condition

 (mysql_fetch_assoc(mysql_query(('SELECT * FROM
tblquestions, answers WHERE tblquestions.QID =
answers.QID AND answers.QID = \'' . $_GET['h1'] .
'\'')))['Question'] === '<script>alert(1)</script>')

SECOND CHANCE!

CONCLUSIONS

 Exploit generation can improve .AST
 Reduce false positive

 Add transparency

 Helps o hack stuff

 Condition resolver can help do detect
 Authentication condition and access control issues

 Hidden execution paths (e.g. backdoors)

 Hardcoded conditions

 Combination of symbolic and real execution is useful
 Reduce labor input

 Improve performance

 Helps to balance CPU/time/memory

RELATED WORKS

 Chandrasekhar Boyapati, Paul Darga. Eficient software model checking of data structure properties.

 Keshav Pingali, Micah Beck, Richard Johnson, Mayan Moudgill, and Paul Stodghill. Dependence flow graphs: an algebraic approach to program
dependencies.

 E. Morel and C. Renvoise. Global optimization by suppression of partial redundancies.

 R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck. An eficient method of computing static single assignment form.

 Vugranam C. Sreedhar and Guang R. Gao. Computing u-nodes in linear time using dj-graphs

 Mark N. Wegman and F. Kenneth Zadeck. Constant propagation with conditional branches.

 Ron K. Cytron and Jeanne Ferrante. Eficiently computing u-nodes on-the-fly.

 Thomas Ball, Rupak Majumdar, Todd D. Millstein, and Sriram K. Rajamani. Automatic predicate abstraction of c programs.

 Thomas Ball and Sriram K. Rajamani. Bebop: A symbolic model checker for boolean programs.

 David Binkley. Interprocedural constant propagation using dependence graphs and a data-flow model.

 AEG

 MAYHEM

 The Essence of Command Injection Attacks in Web Applications, http://www.cs.ucdavis.edu/~su/publications/popl06.pdf

 http://qspace.library.queensu.ca/bitstream/1974/5651/3/Alalfi_Manar_H_2010April_PhD.pdf

http://www.cs.ucdavis.edu/~su/publications/popl06.pdf
http://www.cs.ucdavis.edu/~su/publications/popl06.pdf

SPECIAL THANKS

 PT

AI FOR HACKER
Automatic Exploit

Generation for

Application Source

Code Analysis

