
Analyzing Arcane Attack
Vectors: Adobe Reader's
Logical Way to SYSTEM
Brian Gorenc, Manager, Vulnerability Research
AbdulAziz Hariri, Senior Security Researcher
Jasiel Spelman, Senior Security Researcher

Agenda

–  Introduction

– Understanding the JavaScript Attack Surface

– Vulnerability Discovery

– Constructing the Exploit

– Understanding the Shared Memory Attack Surface

– Constructing the Exploit

Introduction

Introduction

4

HPE Security Zero Day Initiative

AbdulAziz Hariri - @abdhariri

Security Researcher at the Zero Day Initiative

Root cause analysis, vulnerability discovery, and exploit development

Jasiel Spelman - @WanderingGlitch

Security Researcher at the Zero Day Initiative

Root cause analysis, vulnerability discovery, and exploit development

Brian Gorenc - @maliciousinput
Head of Zero Day Initiative

Organizer of Pwn2Own Hacking Competitions

Bug hunting
Internal Adobe research starting in December 2014

Patched vulnerabilities

CVE-2015-7623, CVE-2015-7614, CVE-2015-6716,
CVE-2015-6720, CVE-2015-6725, CVE-2015-6719,
CVE-2015-6718, CVE-2015-6721, CVE-2015-6722,
CVE-2015-7619, CVE-2015-6717, CVE-2015-7618,
CVE-2015-6723, CVE-2015-7620, CVE-2015-6724,
CVE-2015-7616, CVE-2015-7615, CVE-2015-7617,
CVE-2015-6715, CVE-2015-6714, CVE-2015-6713,
CVE-2015-6712, CVE-2015-6710, CVE-2015-6709,
CVE-2015-6711, CVE-2015-6708, CVE-2015-6707,
CVE-2015-6704, CVE-2015-6703, CVE-2015-6702,
CVE-2015-6701, CVE-2015-6700, CVE-2015-6699,
CVE-2015-6697, CVE-2015-6690, CVE-2015-6693,
CVE-2015-6695, CVE-2015-6694, CVE-2015-6689,
CVE-2015-6688, CVE-2015-5583, CVE-2015-6685,
CVE-2015-6686, CVE-2015-5114, CVE-2015-5113,
CVE-2015-5095, CVE-2015-5094, CVE-2015-5093,
CVE-2015-4447, CVE-2015-5091, CVE-2015-5090,
CVE-2015-4445, CVE-2015-5115, CVE-2015-5086,
CVE-2015-5085, CVE-2015-4452, CVE-2015-5111

Unpatched vulnerabilities

ZDI-CAN-3362, ZDI-CAN-3336, ZDI-CAN-3312, ZDI-
CAN-3260, ZDI-CAN-3111, ZDI-CAN-3074, ZDI-
CAN-3070, ZDI-CAN-3043, ZDI-CAN-3022, ZDI-
CAN-3021, ZDI-CAN-3019

…more to come.

Patched vulnerabilities

CVE-2015-5102, CVE-2015-5104, CVE-2015-5103,
CVE-2015-5101, CVE-2015-5100, CVE-2015-3053,
CVE-2015-3054, CVE-2015-3055, CVE-2015-3058,
CVE-2015-3057, CVE-2015-3056, CVE-2015-3060,
CVE-2015-3062, CVE-2015-3061, CVE-2015-3069,
CVE-2015-3064, CVE-2015-3063, CVE-2015-3068,
CVE-2015-3067, CVE-2015-3066, CVE-2015-3065,
CVE-2015-3073, CVE-2015-3072, CVE-2015-3071

Understanding the Attack Surface

Understanding Attack Surface

7

Prior research and resources

•  The life of an Adobe Reader JavaScript bug (CVE-2014-0521) - Gábor Molnár
•  First to highlight the JS API bypass issue
•  The bug was patched in APSB14-15 and was assigned CVE-2014-0521
•  According to Adobe, this could lead to information disclosure
•  https://molnarg.github.io/cve-2014-0521/#/

•  Why Bother Assessing Popular Software? – MWR Labs
•  Highlights various attack vectors on Adobe reader
•  https://labs.mwrinfosecurity.com/system/assets/979/original/Why_bother_assessing_popular_software.pdf

Understanding Attack Surface

8

ZDI Research Stats

– Primary Adobe research started internally in December 2014

– We were not getting many cases in Reader/Acrobat

– Main goal was to kill as much bugs as possible

–  Internal discoveries varied in bug type
–  JavaScript API Restriction Bypasses
– Memory Leaks
– Use-After-Frees
–  Elevation of Privileges
–  etc.

Understanding Attack Surface

9

Insights Into Reader’s JavaScript API’s

– Adobe Acrobat/Reader exposes a rich JS API

– JavaScript API documentation is available on the Adobe website

– A lot can be done through the JavaScript API (Forms, Annotations, Collaboration etc..)

– Mitigations exist for the JavaScript APIs

– Some API’s defined in the documentation are only available in Acrobat Pro/Acrobat standard

– Basically JavaScript API’s are executed in two contexts:
–  Privileged Context
– Non-Privileged Context

Understanding Attack Surface

10

Insights Into Reader’s JavaScript API’s

– Privileged vs Non-Privileged contexts are defined in the JS API documentation:

– A lot of API’s are privileged and cannot be executed from non-privileged contexts:

Understanding Attack Surface

11

Insights Into Reader’s JavaScript API’s

– Privileged API’s warning example from a non-privileged context:

Trusted Functions

12

Executing privileged methods in a non-privileged context

Understanding Attack Surface

13

Folder-Level Scripts

– Scripts stored in the JavaScript folder inside the Acrobat/Reader folder

– Used to implement functions for automation purposes

– Contains Trusted functions that execute privileged API’s

– By default Acrobat/Reader ships with JSByteCodeWin.bin

– JSByteCodeWin.bin is loaded when Acrobat/Reader starts up

–  It’s loaded inside Root, and exposed to the Doc when a document is open

Understanding Attack Surface

14

Decompiling

– JSByteCodeWin.bin is compiled into SpiderMoney 1.8 XDR bytecode

– JSByteCodeWin.bin contains interesting Trusted functions

– Molnarg was kind enough to publish a decompiler for SpiderMonkey
–  https://github.com/molnarg/dead0007
– Usage: ./dead0007 JSByteCodeWin.bin > output.js
– Output needs to be prettified
–  ~27,000 lines of Javascript

Vulnerability Discovery

Vulnerability Discovery

16

JavaScript Implicit Method Calls

Vulnerability Discovery

17

JavaScript Method/Property Overloading

•  __defineGetter__ and __defineSetter__

Vulnerability Discovery

18

JavaScript Method/Property Overloading

•  __proto__

Vulnerability Discovery

19

Code Auditing for Overloading Opportunities

•  Search for ‘eval’

Vulnerability Discovery

20

Code Auditing for Overloading Opportunities

•  Search for ‘app.beginPriv(“

Vulnerability Discovery

21

Achieving System-Level eval()

•  Overload property access with a custom function

Vulnerability Discovery

22

Executing Privileged APIs

•  Replace a property with a privileged function

Vulnerability Discovery

23

Vulnerability Chaining

•  Set up the system-level eval such that it executes the bulk of the payload

•  Create the replacement attribute such that it now calls a privileged API

•  Trigger the call

Vulnerability Discovery

24

Proof of Concept – CVE-2015-3073

Normal Behavior

25

Privilege Escalation Exploit

26

Vulnerability Discovery

27

Adobe Reader 11.0.10 – Before Patch

Vulnerability Discovery

28

Adobe Reader DC – After Patch

Vulnerability Discovery

29

Recap

– To achieve a JavaScript bypass we need to

– Achieve execution within the system context

– Escalate privileges by overriding an object method
– Must be in a privileged block within a trusted function

Constructing the Exploit

Constructing the exploit

31

Overview

•  Research triggered from https://helpx.adobe.com/security/products/reader/apsb14-15.html:

•  Challenge: Gain Remote Code Execution through the bypass issue

•  We might be able to do that through the JS API’s that we know about

Constructing the exploit

32

Because documentation sucks..
–  We needed to find a way to dump a file on disk

–  The file can be of any type (try to avoid restrictions)

–  Let’s have a look at the Collab object…through the JS API from Adobe:

Constructing the exploit

33

“If you want to keep a secret, you must also hide it from yourself.” – G. Orwell
–  From all the 128 undocumented methods, the Collab.uri* family is specifically interesting:

Constructing the exploit

34

“The more you leave out, the more you highlight what you leave in.” - H. Green
–  Too good to be true, so I consulted uncle Google before digging more:

Constructing the exploit

35

Show me what you got...
–  Quick overview of the interesting methods:

Constructing the exploit

36

– Overview of the Collab.uri* API’s:
–  The API’s are used for “Collaboration”
–  uriDeleteFolder/uriDeleteFile/uriPutData/uriCreateFolder are privileged API’s
–  uriEnumerateFiles is NOT privileged
–  The Collab.uri* methods take a URI path as an argument (at least)
–  The path expected should be a UNC path
–  The UNC path should start with smb:// or file://

– The API’s fail to:
–  Sanitize the UNC path (smb://localhost/C$/XXX works)
– Check the filetype of the filename to be written on disk (in the case of uriPutData)
– Check the content of oData object to be dumped (in the case of uriPutData)

Constructing the exploit

37

– What we have so far:
– We can dump files on disk using the Collab.uriPutData() method
–  The file contents that we want to dump should be passed as an oData object
–  Stream objects do work!

Constructing the exploit

38

– We can attach files in PDF documents and extract the contents
– We should chain the uriPutData call with one of the bypasses that we discussed earlier

Then what ? How can we get RCE? Actually there are two obvious ways...

Constructing the exploit

39

Gaining RCE
•  First way…a la Chaouki:

Basically write a file to the startup and wait for a logoff/logon !

•  Second way is writing a DLL that would be loaded by Adobe Acrobat

Vulnerable Versions

40

Windows MacOSX
Adobe Reader Vulnerable – Limited (Sandbox) Vulnerable
Adobe Reader DC Vulnerable – Limited (Sandbox) Vulnerable
Adobe Acrobat Pro Vulnerable Vulnerable
Adobe Acrobat Pro DC Vulnerable Vulnerable

Constructing the exploit

41

Putting it all together (Adobe Acrobat Pro)

1.  Attach our payload to the PDF

2.  Create a JS that would execute when the document is open

3.  JS is composed of:
1.  Extraction of the attachment
2.  Bypass JS privileges
3.  Execute Collab.uriPutData to output our payload (startup/dll)

Extract
Attachment

Bypass JS
Privileges

Call uriPutData
with the

extracted
attachment

RCE

 Windows Exploit Demo

42

Reader for MacOSX DEMO

43

Understanding the Shared
Memory Attack Surface

Shared Memory

45

– Region used to share data that multiple processes can use

– API’s that are used to interact with Shared Memory
– OpenFileMapping
– MapViewOfFile
– ReadProcessMemory
– WriteProcessMemory

– Adobe Reader’s updater creates a Shared Memory region
– Used to parse updater command line arguments and other data

Updater’s Shared Memory

46

– Weak permissions

– Authenticated users are allowed to read /
write to the SM

Updater’s UserControls

47

– Updater service (ARMSvc.exe) supports multiple user controls:

Updater’s UserControls

48

–  Interesting UserControls are 170/179:
–  170 - Creates a shared memory section:

Updater’s UserControls

49

– 179 - Executes ELEVATE
– Runs AdobeARMHelper.exe with arguments from the Shared Memory section

Attacking the updater

50

– Looking into AdobeARMHelper.exe, we find sub_42A260
1.  Finds the first file in a given directory
2.  Check to verify the file is signed by Adobe

–  If it's signed by, Adobe sub_42A260 copies the file to the directory where AdobeARM.exe resides:

Attacking the updater

51

–  If it fails, it bails out:

Attacking the updater

52

–  If it succeeds, it copies the file:

Attacking the updater

53

– Path for the folder where the files is to be copied is not checked
–  An attacker can supply his own path where he wants a file to be copied

– When the first file is found, the file name is not checked

– When the first file is found, the file extension is not checked

– Nevertheless this function DOES check whether the first file found in a given directory is signed by Adobe

Constructing the Exploit

Putting it all together - CVE-2015-5090

55

– What we're able to do:

 1. Control arguments passed to AdobeARMHelper/AdobeARM via the SM

 2. Execute AdobeARM.exe under system privileges whenever we want

 3. Overwrite AdobeARM.exe with *any* file as long as it's signed by Adobe

– What we NEED to do:

 1. Have something NOT signed by Adobe get executed.

Putting it all together - CVE-2015-5090

56

– To exploit this bug, we need to overwrite AdobeARM.exe with something signed by Adobe, but something
that would allow us to do interesting things
–  For example, arh.exe is an Adobe AIR install wrapper

–  In theory:
– We can overwrite AdobeARM.exe with arh.exe (which is totally legit since it's signed)
–  Then probably have arh.exe install an arbitrary AIR application

– Problem:
–  arh.exe will not allow any extra arguments to be passed to it
–  It will fail since some of the arguments passed from the SM are not directly controlled by us

– Best strategy:
– Overwriting AdobeARM.exe with a signed binary that won't complain when we pass extra arguments to it

Putting it all together - CVE-2015-5090

57

–  If we look closely at Acrobat Pro, we would notice that it contains a binary called AcrobatLauncher.exe

– This binary allows us to launch Acrobat.exe with a given PDF file

– The nice thing about AcrobatLauncher.exe is that it ignores extra arguments and doesn't complain/bail out

– Command line argument:
–  AcrobatLauncher.exe -open PDF_FILE

Putting it all together - CVE-2015-5090

1.  Trigger SM creation
2.  Write arguments to SM
3.  Trigger ELEVATE user control to copy AcrobatLauncher.exe (as AdobeARM.exe) to c:

\progra~1\common~1\Adobe\ARM\1.0\AdobeARM.exe
–  This basically overwrites the updater

4.  Run the new AdobeARM.exe, which will execute Acrobat.exe with our PDF exploit
–  This step is automatically done with the ELEVATE control

5.  The PDF exploit should dump secur32.dll in c:\progra~1\common~1\Adobe\ARM\1.0
–  This is done using one of our JavaScript bypasses

6.  Clear the temp folder so AdobeARMHelper.exe won't copy anything from the temp folder when we call
ELEVATE one more time

7.  Re-write to SM so it will execute our new AdobeARM.exe without any modifications
8.  Execute ELEVATE again which will execute AdobeARM.exe (which is in fact AcrobatLauncher.exe) with

only the "-open" option which will load our secur32.dll and pop calc as SYSTEM

58

CVE-2015-5090 Demo

59

From PDF to Root Video Demo

60

So, did Adobe finally fix the bypass issue?

61

Conclusion

@thezdi

62

