
POC 2015

Hacking from iOS 8 to iOS 9

TEAM PANGU

Agenda

✤ iOS Security Overview

✤ Security Changes from iOS 8 to iOS 9

✤ Kernel Vulnerability Exploited in Pangu 9

✤ Kernel Exploit Chain

✤ Conclusion

Who We Are

✤ Team Pangu is known for releasing jailbreak tools for
iOS 7.1, iOS 8, and iOS 9

✤ We have broad security research interests

✤ Our research was present at BlackHat, CanSecWest,
POC, RuxCon, etc.

✤ We also co-organize a mobile security conference
named MOSEC (mosec.org) with POC

http://mosec.org

iOS Security Overview

✤ Apple usually releases a white paper to
introduce iOS security architecture

✤ Isolations

✤ Restricted Sandbox

✤ Mandatary Code Signing

✤ Exploit Mitigation (ASLR, DEP)

✤ Data Protection

✤ Hypervisor

Timeline of Major Security Features

iPhoneOS 1.x

0 Protection

iPhonOS 2.x

ASLR

iOS 4.3

Code)Signing

iOS 6

KASLR TeamID

iOS 7 iOS 9

TouchID KPP

iOS 8

Many security features are undocumented

Agenda

✤ iOS Security Overview

✤ Security Changes from iOS 8 to iOS 9

✤ Kernel Vulnerability Exploited in Pangu 9

✤ Kernel Exploit Chain

✤ Conclusion

Improved Team ID Validation

✤ Team ID was introduced in iOS 8

✤ Prevent platform binaries from loading third-party code

✤ iOS 9 enforces that a process either is a platform binary
or has a team identifier

DYLD Environment Variables

✤ DYLD environment variables affect the dynamic
linker dyld in many ways

✤ Output debug info (e.g., through DYLD_PRINT_*)

✤ Dylib injection (e.g., through
DYLD_INSERT_LIBRARIES)

✤ iOS 8.3 starts to ignore DYLD environment variables
unless the main executable has certain entitlements

Released Source Code of dyld

By default, ignoreEnvironmentVariables is
false

checkEnvironmentVariables will not ignore
DYLD environment variables

dyld on iOS 8.3

✤ ignoreEnvironmentVariables is set True according to
v108

✤ Where is v108 from?

dyld on iOS 8.3

✤ v108 indicates the code signing status of the program

✤ CSOPS is used to query the code signing attributes

dyld on iOS 8.3

✤ v108 & 0x1004 == 4096

✤ 0x0004 means that the program has get-task-allow
entitlement

✤ In other words, DYLD environment variables only work
for binaries that have the get-task-allow entitlement

DYLD Environment Variables

✤ Consequence:

✤ neagent is the only program on iOS that is allowed to
load third party signed libraries (ignoring the TeamID
validation because of the com.apple.private.skip-
library-validation entitlement)

✤ The trick to force neagent load an enterprise license
signed library through the DYLD_INSERT_LIBRARIES
no longer works

enable-dylibs-to-override-cache

✤ The present of this file was used to force loading of
dynamic libraries from filesystem instead of the
shared cache

✤ It was widely used by previous jailbreak tools to
override the libmis library

✤ dyld in iOS 8.3 starts to ignore this flag

✤ The kernel disallows to check the present of the flag

enable-dylibs-to-override-cache

This value is read from 0xFFFF4084, an address
in the kernel and read only in userspace

Reduced TOCTOU Time Window
in iOS 9

✤ dyld is responsible for loading dynamic libraries and
probing to test if the libraries are signed correctly

Bind code signature with the vnode of the
dylib file

Map segments of the dylib into
memory

Trigger page faults to test code
signatures

Reduced TOCTOU Time Window
in iOS 9

✤ dyld is responsible for loading dynamic libraries and
probing to test if the libraries are signed correctly

Many segment overlapping tricks
were used in the past to bypass the

subsequent code signing checks

Reduced TOCTOU Time Window
in iOS 9

✤ dyld on iOS 9 now validates the mach-o header (first
pages) before mapping segments into the memory

Changes in Loading Launchd
Daemons

✤ xpcd_cache.dylib is used to store plist files of launchd
daemons

✤ All plist files are encoded in the dylib and thus
protected by signatures

✤ Before iOS 9, by using a fake xpcd_cache.dylib (e.g.,
masking the __xpcd_cache segment as readonly),
jailbreak tools can easily customize the launchd
daemons

Changes in Loading Launchd
Daemons

✤ For example, launchd on iOS 8.4 loads the bplist in
following way. Masking the __xpcd_cache segment
readonly does not cause any problem

Changes in Loading Launchd
Daemons

✤ Launchd on iOS 9 will first invoke a trivial API in
xpcd_cache.dylib to ensure the present of executable
permission

Changes in Loading Launchd
Daemons

✤ Launchd on iOS 9 only loads platform binaries

✤ Launchd uses csops to query the status of code
signing attributes of the process

Changes in loading launchd
daemons

✤ Non-platform binary cannot be launched

Changes in Loading Main
Executable

✤ The iOS kernel is responsible for parsing and loading
the main executable while creating a new process

Kernel

Userland

EXECV

exec_mach_imgact

load_machfile parse_machfile

load_code_signature

ubc_cs_blob_add

mac_vnode_check_signature

AMFID

Changes in Loading Main
Executable

✤ Before iOS 8.3, the kernel does not directly validate the
signature of the Mach-O header of the main executable

✤ Kernel only ensures that the main executable has a correct
code signature segment (i.e., the segment is signed correctly)

✤ Instead, the kernel leaves the validation to dyld

✤ dyld will access the Mach-O header of the main executable
and thus trigger page faults, leading to final SHA1
comparison

A Persistent Vector for Code signing
Bypass before iOS 8.3

✤ Modify the Mach-O header of a platform binary

✤ Change the LC_LOAD_DYLINKER of main executable
to trick the kernel to load our fake dyld

✤ Modify LC_UNIXTHREAD of our fake dyld which
enables us to control all register values and point the
PC value to a ROP gadget

Changes in Loading Main
Executable

✤ In iOS 8.3, the kernel proactively compares the SHA1 of the
Mach-O header with the SHA1 in corresponding cs_blob

More Changes in Loading Main
Executable

✤ Actually in iOS 9, Apple adds more check for picking
up an already registered cs_blob

Kernel Patch Protection (KPP)

✤ Apple introduced KPP in iOS 9 for 64bit devices

✤ Implementation details are unclear

✤ It’s believed that it is related to the Secure Enclave
Processor (SEP), an alternative of TrustZone on iOS
devices

✤ Unfortunately, the SEP firmware is encrypted

KPP Observations

✤ KPP randomly checks the integrity of RX pages of the kernel-cache and
page table

✤ Persistent code patch is not feasible, because it would trigger random
kernel panic

✤ Panic when RX page is modified

panic(cpu 1 caller 0xffffff80098fde28): SError esr: 0xbf575401 far: 0xffffff8009898000

✤ Panic when Page table is modified

panic(cpu 0 caller 0xffffff80214fde28): SError esr: 0xbf575407 far: 0xffffff8021498000

Agenda

✤ iOS Security Overview

✤ Security Changes from iOS 8 to iOS 9

✤ Kernel Vulnerability Exploited in Pangu 9

✤ Kernel Exploit Chain

✤ Conclusion

Use-after-free in
IOHIDResourceUserClient

✤ We found it by auditing IOHIDFamily source code

✤ The bug was also independently discovered by other researchers

✤ @qwertyoruiop, Cererdlong, etc

✤ The interesting thing is this bug also affects Mac OS, but is only
triggerable with root on Mac OS

✤ We almost missed the bug

✤ Thanks @qwertyoruiop for pointing out that it is triggerable with
mobile on iOS

Use-after-free in
IOHIDResourceUserClient

✤ _device is allocated in method 0

✤ createDevice -> createAndStartDevice

Use-after-free in
IOHIDResourceUserClient

✤ _device is released in method 1

✤ terminateDevice -> OSSafeRelease

Use-after-free in
IOHIDResourceUserClient

✤ OSSafeRelease is NOT safe

✤ #define OSSafeRelease(inst) do { if (inst) (inst)-
>release(); } while (0)

✤ It does not nullify the pointer after releasing it!

Use-after-free in
IOHIDResourceUserClient

✤ _device is used again in many functions

✤ E.g. method 2 takes 1 input scalar and an input struct,
also the the return value is directly passed to user space

✤ IOHIDResourceDeviceUserClient::_handleReport

Agenda

✤ iOS Security Overview

✤ Security Changes from iOS 8 to iOS 9

✤ Kernel Vulnerability Exploited in Pangu 9

✤ Kernel Exploit Chain

✤ Conclusion

Context of the UAF

✤ 32bit

✤ The UAF object is in the kalloc.192 zone

✤ Both R1 and R2 are under control when the UAF is
triggered

Context of the UAF

✤ 64bit

✤ The UAF object is in the kalloc.256 zone

✤ Only X1 is under control when the UAF is triggered

Transfer UAF to Type Confusion

✤ The UAF object zone can be easily filled with variety IOUserClient
objects via calling IOServiceOpen

✤ Check vtable offsets of all possible IOUserClient classes to see what
functions we may call

✤ OSMetaClass::serialize(OSSerialize *)

✤ OSMetaClass::getMetaClass(void)

✤ OSMetaClass::release(void)

✤ OSMetaClassBase::isEqualTo(OSMetaClassBase const*)

Exploit Type Confusion to Leak
Kernel Slide

✤ OSMetaClass::getMetaClass(void)

✤ Return a static object inside kernel -> leak kernel base

✤ 32bit return value is enough for arm64 also

✤ High 32bit value is always 0xffffff80

Exploit Type Confusion to Leak
Heap Address

✤ OSMetaClass::release(void)

✤ R0/X0=self pointer -> leak low 32bit of an object
address

✤ Not enough for arm64

✤ High 32bit value is 0xffffff80 or 0xffffff81

Exploit Type Confusion to Leak
Heap Address for ARM64

✤ OSMetaClassBase::isEqualTo(OSMetaClassBase
const*)

✤ R1/X1 is under control

✤ Calling the function twice can decide the high 32bit
value of the heap address

Heap Spray with OSData

✤ What we have now - Kernel base / object address

✤ io_service_open_extended -> OSUnserializeXML ->
spray OSData with controlled size and content

✤ Set vtable = object address - call offset + 8

✤ Set vtable+8 = gadget to call

The Read Gadget

✤ 32bit

✤ LDR R0, [R1]; BX LR;

✤ 64bit

✤ LDR X0, [X1,#0x20]; RET;

The Write Gadget

✤ 32bit - R1 and R2 are under control

✤ STR R1, [R2]; BX LR;

✤ 64bit - X1 and contents of X0 are controlled

✤ LDR X8, [X0,#0x60]; STR X1, [X8,#8]; RET;

Agenda

✤ iOS Security Overview

✤ Security Changes from iOS 8 to iOS 9

✤ Kernel Vulnerability Exploited in Pangu 9

✤ Kernel Exploit Chain

✤ Conclusion

Conclusion

✤ Apple puts more efforts on improving the whole
security mechanisms rather than fixing individual
bugs

✤ A lot of security features in iOS were undocumented,
which make jailbreaking more and more difficult

✤ KPP introduced in iOS 9 makes people believe that
there may be no jailbreak anymore, what we did
proves that hackers will always find their way in

Thanks for Your Attention

Q&A

